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Abstract—In this paper, we focus on the one-example person
re-identification (re-ID) task, where each identity has only one
labeled example along with many unlabeled examples. We propose
a progressive framework which gradually exploits the unlabeled
data for person re-ID. In this framework, we iteratively (1) update
the Convolutional Neural Network (CNN) model and (2) estimate
pseudo labels for the unlabeled data. We split the training data
into three parts, i.e., labeled data, pseudo-labeled data, and index-
labeled data. Initially, the re-ID model is trained using the labeled
data. For the subsequent model training, we update the CNN
model by the joint training on the three data parts. The proposed
joint training method can optimize the model by both the data
with labels (or pseudo labels) and the data without any reliable
labels. For the label estimation step, instead of using a static
sampling strategy, we propose a progressive sampling strategy to
increase the number of the selected pseudo-labeled candidates
step by step. We select a few candidates with most reliable
pseudo labels from unlabeled examples as the pseudo-labeled
data, and keep the rest as index-labeled data by assigning them
with the data indexes. During iterations, the index-labeled data
are dynamically transferred to pseudo-labeled data. Notably, the
rank-1 accuracy of our method outperforms the state-of-the-art
method by 21.6 points (absolute, i.e., 62.8% vs. 41.2%) on MARS,
and 16.6 points on DukeMTMC-VideoRelID. Extended to the
few-example setting, our approach with only 20% labeled data
surprisingly achieves comparable performance to the supervised
state-of-the-art method with 100% labeled data.

Index Terms—Person Re-Identification, semi-supervised learn-
ing, few-example learning

I. INTRODUCTION

ERSON re-identification (re-ID) aims at spotting the
person-of-interest from non-overlapping camera views. In
recent years, deep convolutional neural networks (CNN) has
led to impressive successes in the field of re-ID [1], [2], [3].
Most existing re-ID methods, in particular deep learning mod-
els, adopt the supervised learning approach. These methods
rely on the full annotations, i.e., the identity labels of all the
training data from multiple cross-view cameras. However, it
is labor intensive to annotate large-scale data. The intensive
human labor may limit re-ID applications, especially when
there are many cameras.
Recently, there are a few semi-supervised person re-ID
methods [4], [5], [6]. We focus on the one-example setting,
in which only one example is available for each identity. The
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setting is more challenging but provides a much more cost-
effective solution to the real world re-ID problems, where cross
camera annotation requires substantial annotation efforts.

Most existing methods [6], [7] employ a static strategy to
determine the quantity of selected pseudo-labeled data for
further training. The samples with confidence higher than a
pre-defined threshold are then selected for the subsequent
training. During iterations, these algorithms select a fixed
size of pseudo-labeled training data from beginning to end.
However, in the initial stage, only a few label predictions are
reliable due to the very few labeled examples as initialization.
As the iteration goes, the model gets more robust, resulting
in more accurate label predictions. Therefore, keeping the
size of the selected data fixed would hinder the performance
improvement.

We propose a progressive learning framework to better
exploit the unlabeled data for person re-ID with limited
exemplars. Initially, a CNN model is trained on the one-
example labeled samples. We then generate the pseudo labels
for all unlabeled samples, and select some reliable pseudo-
labeled data for training according to the prediction confi-
dence. Different from existing methods [5], [0], the selected
subset is continuously enlarged during iterations according to
a sampling strategy. At the initial stages, we only include the
most reliable and easiest ones. In the subsequent stages, we
gradually select a growing number of pseudo-labeled data to
incorporate more difficult and diverse data.

Wau et al. [8] proposed a progressive sampling strategy and
dissimilarity sampling criterion for one-example video-based
re-ID, where each identity has a labeled tracklet (62 image
frames on average). In the progressive sampling strategy,
the data is split into two parts, labeled data and pseudo-
labeled data which are selected to update the model. Different
from [8], in this paper, we consider the one-shot image-based
re-ID setting, where only one image instead of a tracklet is
labeled for each identity. Given the very limited data, it is
very hard to initialize the model. We therefore propose to
leverage the unlabeled data in a self-supervised manner to
help to learn a robust model. The previous pseudo labelling in
[8] utilizes part of the unlabelled data, but overlooks a large
number of unlabelled data (unselected data) whose pseudo
labels are not reliable. These human images also preserve the
data distribution information due to the large amount at initial
iterations. We propose to use the remaining unselected data
(which is unreliable during pseudo labeling) on top of the
pseudo-labeled data. We label these data by their indexes and
design the exclusive loss to optimize the CNN model by these
index-labeled data. Different from the widely used identity
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cross-entropy loss, the target of the exclusive loss is to repel
any two unlabelled data way from each other, which optimizes
the model by learning to distinguish the difference of all the
input images (or tracklets).

Specifically, we split training data into three parts, labeled
data, selected pseudo-labeled data and index-labeled data. We
then propose a joint learning method to simultaneously train
the CNN model on all the data splits. Figure 1 shows the
three different data sources in our framework. For the labeled
data and selected pseudo-labeled data, we apply an identity
classifier on their CNN features and further optimize the model
by comparing identity predictions and (pseudo-) labels. For
those index-labeled data, we use the exclusive loss to optimize
the model without any identity labels. The classification loss
pulls representations of the same identity data close to each
other, while the exclusive loss pushes representations of all the
index-labeled samples away from each other. We observe in
our experiments that our method can effectively uncover data
distribution and generate a robust model even at initial stages.
We also extend our method to the few-example setting. On
the MARS dataset, our method reduces 80% annotation cost
with only a 4.3% rank-1 accuracy drop.

Our contributions are summarized as follows:

« We propose a progressive method for one-example person
re-ID to better exploit the unlabeled data. This method
adopts a dynamic sampling strategy that we start with
reliable samples and gradually includes diverse ones,
which significantly makes the model robust.

« We apply a distance-based sampling criterion for label
estimation and apply candidates selection to remarkably
improve the performance of label estimation.

e We propose a joint learning method to simultaneously
train the CNN model on the labeled, pseudo-labeled and
index-labeled data.

o Our method achieves surprisingly superior performance
on the one-example setting, outperforming the state-of-
the-art by 21.6 points (absolute) on MARS and 16.6
points (absolute) on DukeMTMC-VideoRelD.

e Our approach can be readily extended into the few-
example setting (with 20% labeled data). It achieves
comparable rank-1 performance (76.5%) compared to the
state-of-the-art performance (79.80%) in the supervised
setting (with 100% labeled data).

II. RELATED WORKS
A. Supervised person re-ID

In recent years, deep learning based methods have been
proved to be effective in many computer vision applica-
tions [9], [10], [11]. To address the re-ID problem, CNN
models [12], [1], [13], [14], [15] are used for the person re-ID
task and have obtained impressive performance. A branch of
works [10], [16] use the siamese model which takes image
pairs or triplets as input. Li ef al. [12] train the network
with pairs of pedestrian images, where the verification model
with the patch-matching layer is adopted. Another branch
of researches adopts identity classification models. Zheng et
al. [2] propose an identity discriminative embedding (IDE)
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Fig. 1. The proposed joint training procedure for one-example person re-ID.
“CE loss” denotes the Cross-Entropy loss. We select a few unlabeled data
with reliable pseudo labels as the pseudo-labeled data. On the labeled and
pseudo-labeled data, we optimize the CNN model by an ID classifier and
the Cross-Entropy loss. The remaining unlabeled data are taken as the index-
labeled data, where no reliable pseudo label is available. Without any identity
labels, the exclusive loss can still help to learn a robust model.

that directly use a conventional fine-tuning approach on the
Market-1501 dataset and obtain competitive results. Xiao et
al. [1] train a classification model from multiple domains and
propose a domain guided dropout. Zheng et al. [17] adopt a
joint classification and verification model and use two pairs of
images for training. In this work, we train our classification
model in the same way as in [2].

B. Semi-supervised learning and Progressive Paradigm

Semi-supervised learning [18], [19], [20], [21], [22] takes
advantages from both labeled and unlabeled data to solve the
given task. Some semi-supervised approaches [23] use graph
representations in recent years. Kipf er al. [23] encode the
graph structure directly using a neural network model and
train on a supervised target for all nodes with labels. Most
recently, with the great success of the Generative Adversarial
Network (GAN) [24], many researchers adopt semi-supervised
learning to explore images generated by GAN [25], [3], [26].
Salimans et al. [25] present a variety of new architectural
features and training procedures that apply to the generative
adversarial networks framework.

Curriculum Learning (CL) is proposed in [27], which
progressively obtains knowledge from easy to hard samples
in a pre-defined scheme. Kumar et al. [28] propose Self-
Paced Learning (SPL) which takes curriculum learning as a
regularization term to update the model automatically. The
self-paced paradigm is theoretically analyzed in [29], [30].
We are inspired by these progressive algorithms. Compared
with the existing SPL and CL algorithms, we incorporate
the retrieval measures (the distance in feature space) into the
learning mechanism, which well fits the evaluation metric for
person re-ID. We also introduce the joint learning method to
explore all of the labeled and unlabeled data.
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C. Semi-Supervised person re-1D

In this paper, we follow the semi-supervised person re-
ID setting as in [31], which assumes that few data from
the training set are labeled, and the rest of the training set
is unlabeled. In [31], a novel semi-supervised region metric
learning method is proposed, that estimates positive neighbors
to generate positive regions and learn a discriminative region-
to-point metric. There are some works that focus on the
few-example video-based re-ID task. Ye et al. [0] propose
a dynamic graph matching (DGM) method, which iteratively
updates the image graph matching and the label estimation to
learn a better feature. Liu et al. [5] update the classifier with
K-reciprocal Nearest Neighbors (KNN) in the gallery set, and
refine the nearest neighbors by apply negative sample mining
with KNN in the query set. Even though [5], [6] claim that
they are unsupervised methods, they are actually one-example
methods in experiments, because both of them require at least
one labeled tracklet for each identity. To be more rigorous, we
consider this problem as a one-example task.

D. Unsupervised domain adaptation for person re-1D

Recently, some cross-domain transfer learning methods [7],
[32], [33] focus on the unsupervised domain adaptation re-
ID task, where information from an external source dataset
is utilized. Peng et al. [32] propose to learn a discriminative
representation for target domain based on asymmetric multi-
task dictionary learning. Fan et al. [7] propose a progressive
method for domain adaptation, where the K-means clustering
and the IDE [2] network pre-trained on the source dataset is
updated iteratively. Different from these methods, our work
focuses on the one-example setting that we do not require the
images and identity annotations from an additional dataset.

III. THE PROGRESSIVE MODEL

We first introduce the framework overview of the proposed
method in Section III-A, and the preliminaries in Section III-B
Then we illustrate the two key parts of our method, i.e., the
joint learning method in Section III-C and the label estimation
in Section III-D. Lastly, we present the overall progressive
iteration strategy in Section III-E.

A. Framework Overview

As shown in Figure 2, our method updates the model by
the following two steps iteratively: 1. train the CNN model
by the joint learning on the labeled data, pseudo-labeled
data, and index-labeled data; 2. select a few reliable pseudo-
labeled candidates from unlabeled data according to a predic-
tion reliability criterion. Specifically, in the first iteration, all
the unlabeled data have no pseudo labels. During iterations,
we continuously enlarge the set of selected pseudo-labeled
candidates. The remaining unlabeled data are taken as the
index-labeled data by labeling them with the data index. Our
joint learning method then progressively learns a robust and
stable model on the three data splits. In the next iteration,
the pseudo labels are assigned to the unlabeled candidates by
the identity labels of their nearest labeled neighbors in the

3

feature space. The distance between them is considered as the
dissimilarity cost, which is the measure of reliability for the
pseudo label.

B. Preliminaries

We first introduce the necessary notations for the one-
example re-ID task. Let  and y denote the pedestrian visual
data and the identity label, respectively. The visual data = can
be either a person image for image-based re-ID, or a tracklet
(a series of person images) for video-based re-ID. For the
training in the one-example re-ID task, we have the labeled
data set £ = {(x1,91), .., (Tn,,yn,)} and the unlabeled data
set = {Tn,+1, -, Tn,+n, |- Usually, these data are utilized in
an identity classification way to train the re-ID model ¢(8, -).
For the evaluation stage, the trained CNN model ¢ is used to
embed both query data and gallery data into the feature space.
The query result is the ranking list of all gallery data according
to the Euclidean Distance between the query data and each
gallery data, ie.., ||¢(0;x4) — ¢(0;24)||, where z, and z,
denote the query data and the gallery data, respectively. To
exploit abundant unlabeled data, we predict the pseudo label
y; for each unlabeled data z; € U/ and select a few reliable
ones for the identity classification learning. We denote S and
M? as the pseudo-labeled dataset and index-labeled data set
at t-th step, respectively.

C. The Joint Learning Method

We first introduce the model updating step. At the ¢-th
iteration, we have three kinds of the data source for training,
i.e., the labeled data £, the selected pseudo-labeled data S*
and the remaining index-labeled data M!. We utilize the
labeled data £ and the pseudo-labeled data St by the identity
classification learning with their (pseudo-) labels. For the
index-labeled data M, their pseudo labels are not-yet-reliable
and may harm the model training. Therefore, we utilize the
exclusive loss to optimize the CNN model on M.

The Exclusive Loss aims at learning a discriminative
embedding on M? without any identity labels. In general,
we optimize the CNN model by learning to distinguish sam-
ples, rather than identities. To push each index-labeled data
z; € M' away from the other data z; € M',i # j in the
feature space, we have the following target for unsupervised
feature learning:

max Y [[6(8:2i) — 6(851))]. )
aii,IjeMt
TiFT
where || - || denotes the Euclidean distance.

To solve Eq. (1) in an efficient way, we have the following
approximation. Let v; = rj~>(0; x;) be the L2-normalized feature
embedding for the data x;, i.e., ||v;|| = 1. Since [|v; —v;||*> =
2 — viT v;, maximizing the Euclidean distance between data
x; and x; is equivalent to minimize the cosine similarity
v; v;. Therefore, Eq. (1) can be approximately optimized by a
softmax-like loss:

exp(vi"§(6; 2:)/7)

LV 6(0500)) = ~log 5z . |
R e A T YOC

2
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Fig. 2. Overview of the proposed iterative framework. In each iteration, (1) we train the CNN model by the joint learning on the labeled data, pseudo-labeled
data, and index-labeled data. We utilize the labeled data and the pseudo-labeled data by an identity classification learning with their (pseudo-) labels. On the
index-labeled data where no reliable pseudo label is available, we apply the exclusive loss directly on the images to optimize the model without any identity
label. (2) In the label estimation step, we select a few reliable pseudo-labeled candidates from unlabeled data U to the selected set S according to the distance
in feature space. Nodes with different colors in the feature space box denote different identity samples.

where V € RIM'Ixns ig 4 lookup table that stores the features
of each index-labeled data x;. 7 is a temperature parameter
that controls the concentration level of the distribution. A
higher temperature 7 leads to a softer probability distribution.
Inspired by [34], we adopt the lookup table V' to avoid the
exhaustive computation of extracting features from all data
at each training step. In the forward operation, we compute
cosine similarities between data x; and all the other data by
VT $(0; ;). During backward, we update the i-th column of
the table V' by v; + 3(v; + ®(;;)) and then L2-normalize
v; to a unit vector.

The exclusive loss is a self-supervised auxiliary loss to learn
discriminative representations from the unlabeled data. During
the model optimization, to achieve the target that any two
unlabelled samples are repelled away, the exclusive loss forces
the model to learn to distinguish the difference of input images.
Therefore, the learned representation is expected to focus more
on details of an input identity. During this procedure, our
model accesses more samples. Although these samples have
neither ground truth labels nor reliable pseudo labels, they can
still provide some weak supervision information by exploiting
the differences between human images.

Joint objective Function. There are three data parts, i.e.,
the labeled data, pseudo-labeled data, and the index-labeled
data. We jointly optimize our model on all data parts. On
the labeled dataset £ where we have the ground truth identity
labels, we follow recent works [7], [35], [36] to train the re-ID
model. We have the following objective function:

=1

where f(w;-) is an identity classifier, parameterized by w,
to classify the embedded feature ¢(0;x;) € R™ into a k-
dimension confidence estimation, in which % is the number of
identities. {c; denotes the cross-entropy loss on the identity
label prediction f(w;#(0;z;)) € R* and its ground truth
identity label y;. Similarly, we can optimize the model on

the pseudo-labeled data set S by

ni+ny

min silee(f(w; ¢(0;2;)),
w i=n;+1

9i), “4)

where s; € {0,1} is the selection indicator for the unlabeled
sample z;, which is generated from previous label estimation
step. s; determines whether we should select pseudo-labeled
data (z;, 9;) for identity classification training. We will discuss
it later in Section III-D.

Considering the three data splits, we design the following
objective function for the model training at ¢-th iteration:

min A ZECE(f(w; &(0;2;)), yi)+
A > st s (f (w; ¢(6; 3:)), i)+ (5)

(L=2) D (1—siE(V;é(6; 1)),

where ) is a hyper-parameter to adjust the contribution of the
identity classification loss ¢z and the exclusive loss .. The
Eq. (5) consists of three loss parts. The first part is the ID
classification loss on the labeled set £. The second one is the
ID classification loss on the selected pseudo-labeled set St.
The last one is the exclusive loss on the index-labeled set M.

D. The Effective Sampling Criterion

The label estimation step is crucial to obtain the appro-
priately selected candidates S? to exploit the unlabeled data.
The previous works sample the unlabeled data from confident
to uncertain ones according to the classification loss [37].
However, the loss from classification prediction does not
well fit the retrieval evaluation. Moreover, the classifier may
easily over-fit the one-example labeled data. Thus it may be
not robust in predicting identities. To address this problem,
we propose an effective sampling criterion, which takes the
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distance in the feature space as a measure of pseudo label
reliability. For the label estimation on unlabeled data, we
adopt the Nearest Neighbors (NN) classifier instead of the
learned identity classification. The NN classifier assigns the
pseudo label for each unlabeled data by its nearest labeled
neighbor in feature space. And the distance between them
is regarded as the confidence of label estimation. For the
candidates selection, we select a few top reliable pseudo-
labeled data according to their label estimation confidence.

More formally, we estimate the pseudo label for each
unlabeled data z; € U by:

z*,y* =arg min

(z1,01)€EL lp(0; i) — &(6;21)]],  (6)

d(0;x;) = ||p(6; 2:) — ¢(8; 27|, (7

9=y ®)

where d(0;x;) is the dissimilarity cost of label estimation.

To select candidates, at the iteration step ¢, we sample the

pseudo-labeled candidates into training by setting the selection
indicators as follows:

ny+ny
> sid(0; 1), )

=n;+1

st =arg min
lIstllo=m: .
K2
where m; denotes the size of selected pseudo-labeled set and
st is the vertical concatenation of all s;. Eq. (9) selects the
top m; nearest unlabeled data for all the labeled data at the
iteration step t.

E. The overall iteration strategy

We iteratively train the CNN model and then estimate labels
for unlabeled data. At each iteration, we first optimize the
model by Eq. (5). Then we estimate labels for unlabeled
data by Eq. (8) and select some reliable ones by applying
the trained model on Eq. (9). Since the initial labeled data
are too few to depict the detailed underlying distribution, it
is irrational to incorporate excessive pseudo-labeled data in
training at the initial iteration.

We propose a dynamic sampling strategy to ensure the relia-
bility of selected pseudo-labeled samples. It starts with a small
proportion of pseudo-labeled data at the beginning stages and
then incorporates more diverse samples in the following stages.
We start our framework by setting mg = 0 and MO =U, ie.,
optimizing the model by (1) identity classification training on
labeled data £ and (2) unsupervised training by exclusive loss
on all the unlabeled data. In later iterations, we progressively
increase the size of selected pseudo-labeled candidates set | S*|.
At iteration step ¢, we enlarge the size of sampled pseudo-
labeled data by set m; = m;_1+p-n,, where p € (0, 1) is the
enlarging factor which indicates the speed of enlarging the
candidates set during iterations. As described in Algorithm 1,
we evaluate the model ¢(@;-) on the validation set at each
iteration step and output the best model. In the one-example
experiment, we take another person re-ID training set as the
validation set.

How to find a proper enlarging factor p for real-
life applications? The enlarging factor controls the speed
of enlarging the reliable pseudo-labeled candidates set during

5

Algorithm 1 The proposed framework

Require: Labeled data £, unlabeled data U, enlarging factor
p € (0,1), initialized CNN model 6.
Ensure: The best CNN model 8*.
1: Initialize the selected pseudo-labeled data Sy < (), sam-
pling size m; < p-n,, iteration step ¢ <— 0, best validation
performance V* < 0.

2: while m;1 < |U| do

3 t+t+1

4. Update the model (0;, w;) on £, St and M? via Eq. (5).
5. Estimate pseudo labels for I/ via Eq. (8)

6:  Generate the selection indicators s; via Eq. (9)

7:  Update the sampling size: my41 <— my +p - ny

8: end while

9: fori< 1toTdo

10:  Evaluate 6; on the validation set — performance V;
11:  if V; > V* then

12: V0" V,;,0;

13:  end if

14: end for

iterations. Smaller enlarging factor indicates lower enlarging
speed, therefore, more iteration steps and training time. In
the real-life application, this factor is a trade-off between
efficiency and accuracy. An aggressive choice is to set p to
a very large value, which urges m; to increase rapidly. As
a result, the sampled pseudo-labeled candidates may not be
reliable enough to train a robust CNN model. A conservative
option is to set p to a very small value, which means m;
progressively enlarges with a small change in each step.
This option tends to result in a very stable increase in the
performance and a promising performance in the end. The
disadvantage is that it may require an excessive number of
stages to touch great performance.

IV. EXPERIMENTAL ANALYSIS
A. Datasets and Settings

We evaluate our method on four large-scale re-ID datasets.

Market-1501 [2] contains 12,936 images of 751 identities
for training and 19,732 images of 750 identities for testing.

DukeMTMC-relID [17] is a re-ID dataset derived from the
DukeMTMC dataset [38]. It contains 16,522 training images
of 702 identities, 2,228 query images of the other 702 identities
and 17,661 gallery images.

MARS [29] contains 17,503 tracklets for 1,261 identities
and 3,248 distractor tracklets, which are captured by six
cameras. This dataset is split into 625 identities for training
and 636 identities for testing.

DukeMTMC-VideoReID [8] is a  subset of
DukeMTMC [38] for video-based person re-ID. DukeMTMC-
VideoReID consists of 702 identities for training, 702
identities for test, and 408 identities as distractors. In total
there are 2,196 videos for training and 2,636 videos for
test. Each video contains images sampled every 12 frames.
During test, a video for each ID is used as the query, and the
remaining videos are placed in the gallery.
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Evaluation Metrics. We use the Cumulative Matching
Characteristic (CMC) curve and the mean average precision
(mAP) to evaluate the performance of each method. For
each query, its average precision (AP) is computed from its
precision-recall curve. The mAP is calculated as the mean
value of average precision across all queries. We report the
Rank-1, Rank-5, Rank-10, Rank-20 scores to represent the
CMC curve. These CMC scores reflect the retrieval precision,
while the mAP reflects the recall.

Experiment Setting. For one-example experiments, we
use the same protocol as [5]. In all datasets, we randomly
choose an image/trackelt from Camera 1 for each identity as
initialization. If there is no data recorded by Camera 1 for one
identity, we randomly select a sample from the next camera
to make sure each identity has one sample for initialization.
Note that as discussed in Section II-C, [5], [6] are using the
same one-example setting in experiments.

Implementation Details. We adopt ResNet-50 with the last
classification layer removed as our feature embedding model ¢
to conduct all the experiments. We initialize it by the ImageNet
[40] pre-trained model. To optimize the model by the (pseudo-
) label loss, we append an additional fully-connected layer
with batch normalization and a classification layer on the
top of the CNN feature extractor. For the exclusive loss,
we process the unlabeled feature by a fully-connected layer
with batch normalization, followed by a L2-normalization
operation. Following [34], the temperature scalar 7 in Eq. (2) is
set to 0.1. We set A in Eq. (5) to be 0.8 for all the experiments.
In each model updating step, the stochastic gradient descent
(SGD) with momentum 0.5 and weight decay 0.0005 is used to
optimize the parameters for 70 epochs with batch size 16. The
overall learning rate is initialized to 0.1. In the last 15 epochs,
to stabilize the model training, we change the learning rate to
0.01 and set A = 1. For the experiments on video-based re-ID
datasets, we simply add a temporal average pooling layer on
the CNN extractor, where we element-wisely average features
of all frame within a tracklet.

B. Comparison with the State-of-the-Art Methods

There are two recent works designed for one-example video-
based person re-ID, i.e., DGM [6] and Stepwise [5]. Note that
although [5], [6] claim them as unsupervised methods, they are
actually one-example methods in experiments, because they
require at least one labeled tracklet for each identity. We com-
pare our method to them on the one-example video-based re-
ID task. Since the performances of both works were reported
based on hand-crafted features, to make a fair comparison,
we reproduce their methods using the same backbone model
ResNet-50 as ours. The re-ID performance of our method on
the four large-scale re-ID datasets are summarized in Table I
and Table II. With only one labeled example for each identity,
our method achieves surprising performance on both image-
based and video-based re-ID task.

Moreover, we compare our method to two baseline methods,
i.e., the Baseline (one-example) and Baseline (supervised),
which are our initial model and the upper bound model (100%
data are labeled), respectively. Baseline (one-example) takes

6

only the one-example labeled data as the training set and do
not exploit the unlabeled data. Baseline (supervised) is con-
ducted on the fully supervised setting that all data are labeled
and adopted in training. Specifically, we achieve 29.8, 32.4,
26.6 and 33.3 points of rank-1 accuracy improvement over the
Baseline (one-example) on Market-1501,DukeMTMC-relD,
MARS and DukeMTMC-VideoRelD, respectively. The supe-
rior performances on the four large-scale datasets validate the
effectiveness of our proposed method.

C. Ablation studies

We conduct ablation studies on the two key parts of our
methods, i.e., the joint learning method and the dissimilarity
criterion, as shown in Table III and Figure 3. All experiments
share the same training parameters and initial labeled images.

The effectiveness of the joint learning method. We com-
pare our method to the model trained without the joint learning
method, denoted as “Ours w/o J” in Table III. The “Ours w/o
J” model is only optimized by the identity classification loss
on the labeled and selected pseudo-labeled data, as proposed
in the preliminary version [8]. The comparison results on
the two datasets prove the effectiveness of the joint learning
method. Compared to the great improvement on the image-
based task (Market-1501), the improvement of the video-based
task (MARS) is relatively small. The main reason is that the
one-example initial model in the video-based re-ID task is
much more robust compared to the image-based one, since an
initial tracklet contains many images (62 frames on average on
MARS) of the same identity. It can be seen from the accuracy
difference of the initial label predictions on all the unlabeled
data, i.e., 30.0% on MARS while 11.9% on Market-1501.
Exploiting the unlabeled data with a relatively robust model
may not benefit the feature learning a lot.

The effectiveness of the sampling criteria. As mentioned
in Section III-D, some previous works such as SPL take
the classification loss as the criterion. The label estimation
accuracy and re-ID performances of sampling by classification
loss and by dissimilarity cost are illustrated in Figure 3 and
Table III. We observe the huge performance gaps in Figure 3
for both label estimation and evaluation. The label estimations
of both criteria achieve similar and high precision at the
beginning stage. However, the label estimation accuracy gap
between two criteria gradually enlarges. As a result, the perfor-
mance of the classification loss criterion is only enhanced to a
limited extent and drops quickly in the subsequence. Table III
shows the evaluation performance differences between the
two criteria with different enlarging factors. “Ours w/o D”
denotes the method with classification loss as the criterion.
With the same enlarging factor, the criterion of sampling by
dissimilarity cost always leads to superior performances.

D. Algorithm Analysis

Analysis over iterations. Figure 3 illustrates the label
estimation performance and re-ID performance over iterations.
Since we only collect a few most reliable unlabeled samples
as pseudo-labeled data, the precision score of label estimation
is relatively high at the beginning. As iteration goes, we adopt
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TABLE I
COMPARISON WITH THE STATE-OF-THE-ART METHODS ON TWO IMAGE-BASED LARGE-SCALE RE-ID DATASETS. BASELINE (ONE-EXAMPLE) IS THE
INITIAL MODEL TRAINED ON ONE-EXAMPLE LABELED DATA. BASELINE (SUPERVISED) SHOWS THE UPPER BOUND PERFORMANCE WHERE 100%
TRAINING DATA ARE LABELED. p IS THE ENLARGING FACTOR THAT INDICATES THE ENLARGING SPEED OF THE SELECTED PSEUDO-LABELED SUBSET.

Market-1501

DukeMTMC-relD

Settings Methods rank-1  rank-5 rank-10 rank-20 mAP | rank-1 rank-5 rank-10 rank-20 mAP

Supervised Baseline [35] 83.1 92.5 95.0 96.9 63.7 71.0 83.2 87.3 89.9 493
Baseline [35] 26.0 41.4 49.2 59.6 9.0 16.4 27.9 32.8 39.0 6.8
Ours (p = 0.30) 35.5 52.8 60.5 68.6 13.4 23.3 35.7 422 48.0 11.1

One-Example Ours (p = 0.20) 414 59.6 66.4 73.5 17.4 30.0 434 49.2 54.8 15.1
Ours (p = 0.15) 44.8 61.8 69.1 76.1 19.2 35.1 49.1 54.3 60.0 18.2
Ours (p = 0.10) 51.5 66.8 73.6 79.6 23.2 40.5 53.9 60.2 65.5 21.8
Ours (p = 0.05) 55.8 72.3 78.4 83.5 26.2 48.8 63.4 68.4 73.1 28.5

TABLE 11

COMPARISON WITH THE STATE-OF-THE-ART METHODS ON TWO VIDEO-BASED LARGE-SCALE RE-ID DATASETS. BASELINE (ONE-EXAMPLE) IS THE
INITIAL MODEL TRAINED ON ONE-EXAMPLE LABELED DATA. BASELINE (SUPERVISED) SHOWS THE UPPER BOUND PERFORMANCE WHERE 100%
TRAINING DATA ARE LABELED. p IS THE ENLARGING FACTOR THAT INDICATES THE ENLARGING SPEED OF THE SELECTED PSEUDO-LABELED SUBSET.

Settings Method MARS DukeMTMC-VideoReID
ctngs cthods rank-1  rank-5 rank-10 rank-20 mAP | rank-1 rank-5 rank-10 rank-20 mAP
Supervised Baseline [35] 80.8 92.1 94.6 96.1 63.7 83.6 94.6 96.9 97.6 78.3
Baseline [35] 36.2 50.2 57.2 61.9 15.5 39.6 56.8 62.5 67.0 333
DGMH+IDE [6] 36.8 54.0 59.6 68.5 16.9 424 57.9 63.8 69.3 33.6
Stepwise [5] 41.2 55.6 62.2 66.8 19.7 56.3 70.4 74.6 79.2 46.8
One-Example Ours (p = 0.30) 44.5 58.7 65.7 70.6 22.1 66.1 79.8 84.9 88.3 56.3
xamp Ours (p = 0.20) 49.6 64.5 69.8 74.4 27.2 69.1 81.2 85.6 89.6 59.6
Ours (p = 0.15) 52.7 66.3 71.9 76.4 29.9 69.3 81.4 85.9 89.2 59.5
Ours (p = 0.10) 57.9 70.3 752 79.3 349 71.0 83.8 87.4 90.3 61.9
Ours (p = 0.05) 62.8 75.2 80.4 83.8 42.6 72.9 84.3 88.3 914 63.3
-=—QOurs ——QOurs w\o J Ours w\o D
55 25 70 40 40
30 20 //’)_\ g 60 3 35
— 45 o AT =30 o 30
240 %15 2 525 g
S o 40 S Q 25
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Ratio (%) Ratio (%) Ratio (%) Ratio (%) Ratio (%)
(a) (b) (c) (d) (e
Fig. 3. Ablation studies on Market-1501. We validate the effectiveness of the two parts of our method, i.e., the joint learning method (denoted as J) and the

dissimilarity cost (denoted as D). The enlarging factor p is set to 0.1 in the comparison. (a) and (b): Rank-1 accuracy and mAP on the evaluation set during
iterations. (c), (d) and (e): Precision, recall, and F-score of the label prediction of selected pseudo-labeled candidates during iterations. The x-axis stands for
the percentage of selected data over entire unlabeled data. Each solid point indicates an iteration step.

more unlabeled data into the pseudo-labeled set, resulting in a
continuous precision drop of the label estimation. However, in
this procedure, the recall score of label estimation gradually
increases as more correctly estimated pseudo-labeled data are
used. The overall label estimation performance, the F-score,
appears a rapid increase at the first several iterations and a
slight performance drop in the last iterations. Interestingly, the
re-ID evaluation performances, i.e., Rank-1 and mAP scores,
show a similar curve with F-score, which indicates the label
estimation quality is the key factor for the one-example task.

Analysis on the enlarging factor. The enlarging factor
p is a key parameter in our framework. It controls the speed
of enlarging pseudo-labeled candidates set during iterations.
Smaller enlarging factor indicates lower enlarging speed,
therefore, more iteration steps and training time. The results

of different enlarging factors can be found in Figure 4. As
we can see, in experiments, a smaller enlarging factor always
yields better performance. It is consistent with human intuition
since each enlarging step is more cautious and thus the label
estimation is more accurate. We could also find that the gaps
among the five curves are relatively small in the first several
iterations and gradually enlarge in the later iterations, which
shows the estimation errors are accumulated during iterations.

Qualitative Analysis. We visualize our selected pseudo-
labeled samples for an identity during iterations in Figure 5.
As shown in the left, the initial labeled sample is captured
from the front view of the pedestrian, wearing a black shirt
and yellow pants. At the beginning stages (iteration 1 to
4), the selected samples are very similar samples that are
also captured from the front view of the pedestrian. The
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TABLE 11T
ABLATION STUDIES W.R.T. RANK-1 AND MAP ON MARKET-1501
(IMAGE-BASED) AND MARS (VIDEO-BASED). “OURS W/O D” DENOTES
THE MODEL WITHOUT THE DISSIMILARITY COST, i.e., USING
CLASSIFICATION LOSS AS THE CRITERION. NOTE THAT “OURS W/0 D 1S
OPTIMIZED ON ALL THE THREE DATA PARTS. “OURS W/O J” INDICATES
THE MODEL WITHOUT THE JOINT LEARNING METHOD, i.e., ONLY
OPTIMIZED BY THE IDENTITY CLASSIFICATION TRAINING ON LABELED
AND SELECTED PSEUDO-LABELED DATA. “OURS” IS THE FULL MODEL.

. . Market-1501 MARS
Enlarging factor | Methods ank-T AP T kT mAP
Ours w/o D 352 13.2 42.0 20.3
p=0.30 Ours w/o J 28.9 10.5 42.8 21.1
Ours 35.5 13.4 44.5 22.1
Ours w/o D 36.5 13.7 455 23.5
p=0.20 Ours w/o J 36.2 14.0 48.7 26.6
Ours 414 174 49.6 27.2
Ours w/o D 39.8 16.1 46.4 24.1
p=0.10 Ours w/o J 45.1 20.1 57.6 34.7
Ours 51.5 232 57.9 349
Ours w/o D 40.3 16.2 48.1 252
p = 0.05 Ours w/o J 49.8 22.5 62.6 424
Ours 55.8 26.2 62.8 42.6
——p=5 p=10 p=15 p=20 -—=-p=30
30 50
25 40
20 L30
-9
< 8
E1s o 20
" //\ 0
5 0
0 20 40 60 80 0 20 40 60 80
Ratio (%) Ratio (%)
(a) (b)

Fig. 4. Comparison with the different value of enlarging factor p on Market-
1501. (a) mAP of person re-ID on the evaluation set with different enlarging
factors. (b) F-score of the label prediction of selected candidates with different
enlarging factors. The x-axis stands for the ratio of selected data from the
entire unlabeled set. Each solid point indicates an iteration step.

above samples are relatively easy for the model to distinguish.
In iteration 5, samples in the side and back views of the
pedestrian are selected into the pseudo-labeled set. In later
iterations, some samples from other pedestrians are selected
for this identity by mistake, indicated by the red box in the
figure. Although these are error cases, the selected data are
very similar to the initial labeled sample that they share almost
the same cloth appearance. It’s clear that the samples are
selected from easy to hard, from similar to diverse. There
are also two back-view samples missed for this identity, i.e.,
assigned to other identities by mistake.

E. Evaluation on the Few-example Setting

Our method can be easily extended to the few-example
re-ID task by annotating more labeled data for initialization.
We report the few-example performances on the Market-1501
dataset (see Table V) and the MARS dataset (see Table IV).
The performances of our method in different ratios of labeled

Initial labeled sample

Missed samples:

Tter 1 Iter2 Tter 3 Iter 4

B
] K

Fig. 5. The selected pseudo-labeled samples for an identity example on
Market-1501. We use the enlarging factor p of 0.1. Error estimated samples
are in red rectangles. All the samples selected in former iterations will be
selected afterwards. We only show the new samples of each iteration. For
this identity, two samples are missed, and five false samples are selected. The
selected samples are easy and reliable at the beginning and then more difficult
and diverse at a later stage.

TABLE IV
COMPARISON TO THE STATE-OF-THE-ART ON MARS. THESE WORKS ARE
SUPERVISED METHODS, AND THE OTHER PERFORMANCE WE REPORTED
ARE IN THE FEW-EXAMPLE SETTING. THE NUMBER IN THE BRACKET
INDICATES THE PERCENTAGE OF USED LABELED TRAINING DATA.

Settings Methods rank-1 rank-5 rank-20 mAP
MSCAN[41] 71.8 86.6 93.1 56.0
Supervised | K-reciprocal[35] | 73.9 - - 68.4
IDTriplet[16] 79.8 91.4 - 67.7
Ours (10%) 72.2 84.8 91.8 542
Semi- Ours (20%) 76.5 88.4 93.3 60.3
supervised | Ours (40%) 79.2 91.1 95.6 65.5
Ours (60%) 80.6 91.6 95.7 66.8
TABLE V

COMPARISON TO THE STATE-OF-THE-ART ON MARKET-1501. THE
NUMBER IN THE BRACKET INDICATES THE PERCENTAGE OF USED
LABELED TRAINING DATA.

Settings Methods rank-1 rank-5 rank-20 mAP
IDE [2] 72.5 - - 46.0
K-reciprocal[35] 77.1 - - 63.6

Supervised | Siamese [17] 79.5 90.9 - 59.9
GAN [3] 83.9 - - 66.0
IDTriplet[ 16] 84.9 94.2 - 69.1
SPACO (20%) [30] | 68.3 - - -

Semi- Ours (5%) 70.1 84.2 92.1 43.6

supervised | Ours (10%) 80.7 90.4 95.8 58.3
Ours (20%) 82.5 92.4 97.2 63.6

data are reported. On the Marker-1501 dataset, our method
outperforms the state-of-the-art method SPACO [30] by a
large margin. On the MARS dataset, when using 20% labeled
training data, our method achieves 76.5% rank-1 and 60.3%
mAP, which is close to the state-of-the-art supervised methods
with 100% labeled tracklets (upper bound). Although it costs
more annotation effort for the few-example task comparing
to the one-example task, it can easily achieve the competitive
results to supervised performance with less labeled data.
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V. CONCLUSION

We focus on the one-example person re-ID task, where only
one labeled example is labeled for each identity. We propose
a progressive training framework and a joint training method.
In the progressive training framework, we iteratively train the
CNN model and estimate pseudo labels for the unlabeled
data. For the label estimation step, we propose a progressive
sampling strategy to enlarge the pseudo-labeled data set. For
the model training, our proposed joint training method can
effectively exploit the labeled data, the selected pseudo-labeled
data, and the index-labeled data. The promising performance
improvement proves the effectiveness of our method.
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